RLlib: Abstractions for Distributed Reinforcement Learning

Eric Liang, Richard Liaw, Philipp Moritz, Robert Nishihara, Roy Fox, Ken Goldberg, Joseph E. Gonzalez, Michael I. Jordan, Ion Stoica
2017
3 references

Abstract

Reinforcement learning (RL) algorithms involve the deep nesting of highly irregular computation patterns, each of which typically exhibits opportunities for distributed computation. We argue for distributing RL components in a composable way by adapting algorithms for top-down hierarchical control, thereby encapsulating parallelism and resource requirements within short-running compute tasks. We demonstrate the benefits of this principle through RLlib: a library that provides scalable software primitives for RL. These primitives enable a broad range of algorithms to be implemented with high performance, scalability, and substantial code reuse. RLlib is available at https://rllib.io/.

1 repository
3 references

Code References

â–¶ ray-project/ray
3 files
â–¶ doc/source/ray-overview/getting-started.md
1
- [RLlib paper](https://arxiv.org/abs/1712.09381)
â–¶ doc/source/rllib/index.rst
1
url={https://arxiv.org/pdf/1712.09381}
â–¶ README.rst
1
.. _`RLlib paper`: https://arxiv.org/abs/1712.09381
Link copied to clipboard!