Finding structure with randomness: Probabilistic algorithms for constructing approximate matrix decompositions

Nathan Blow
2009
13 references

Abstract

Low-rank matrix approximations, such as the truncated singular value decomposition and the rank-revealing QR decomposition, play a central role in data analysis and scientific computing. This work surveys and extends recent research which demonstrates that randomization offers a powerful tool for performing low-rank matrix approximation. These techniques exploit modern computational architectures more fully than classical methods and open the possibility of dealing with truly massive data sets. This paper presents a modular framework for constructing randomized algorithms that compute partial matrix decompositions. These methods use random sampling to identify a subspace that captures most of the action of a matrix. The input matrix is then compressed---either explicitly or implicitly---to this subspace, and the reduced matrix is manipulated deterministically to obtain the desired low-rank factorization. In many cases, this approach beats its classical competitors in terms of accuracy, speed, and robustness. These claims are supported by extensive numerical experiments and a detailed error analysis.

2 repositories
7 references

Code References

â–¶ pytorch/pytorch
1 file
â–¶ torch/_lowrank.py
6
arXiv:0909.4061 [math.NA; math.PR], 2009 (available at
`arXiv <http://arxiv.org/abs/0909.4061>`_).
arXiv:0909.4061 [math.NA; math.PR], 2009 (available at
`arXiv <https://arxiv.org/abs/0909.4061>`_).
arXiv:0909.4061 [math.NA; math.PR], 2009 (available at
`arXiv <http://arxiv.org/abs/0909.4061>`_).
â–¶ scikit-learn/scikit-learn
1 file
â–¶ sklearn/decomposition/_truncated_svd.py
1
algorithm due to Halko (2009).
Link copied to clipboard!