Deep Reinforcement Learning with Double Q-learning

Hado van Hasselt, Arthur Guez, David Silver
2015
1 reference

Abstract

The popular Q-learning algorithm is known to overestimate action values under certain conditions. It was not previously known whether, in practice, such overestimations are common, whether they harm performance, and whether they can generally be prevented. In this paper, we answer all these questions affirmatively. In particular, we first show that the recent DQN algorithm, which combines Q-learning with a deep neural network, suffers from substantial overestimations in some games in the Atari 2600 domain. We then show that the idea behind the Double Q-learning algorithm, which was introduced in a tabular setting, can be generalized to work with large-scale function approximation. We propose a specific adaptation to the DQN algorithm and show that the resulting algorithm not only reduces the observed overestimations, as hypothesized, but that this also leads to much better performance on several games.

1 repository
1 reference

Code References

â–¶ ray-project/ray
1 file
â–¶ rllib/algorithms/dqn/README.md
1
[Double DQN](https://arxiv.org/pdf/1509.06461.pdf) - As opposed to learning one Q network in vanilla DQN, Double DQN proposes learning two Q networks akin to double Q-learning. As a solution, Double DQN aims to solve the issue of vanilla DQN's overly-optimistic Q-values, which limits performance.
Link copied to clipboard!