An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale.

Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas Unterthiner, Mostafa Dehghani, M. Minderer, G. Heigold, S. Gelly, Jakob Uszkoreit, N. Houlsby
2020
2 references

Abstract

While the Transformer architecture has become the de-facto standard for natural language processing tasks, its applications to computer vision remain limited. In vision, attention is either applied in conjunction with convolutional networks, or used to replace certain components of convolutional networks while keeping their overall structure in place. We show that this reliance on CNNs is not necessary and a pure transformer applied directly to sequences of image patches can perform very well on image classification tasks. When pre-trained on large amounts of data and transferred to multiple mid-sized or small image recognition benchmarks (ImageNet, CIFAR-100, VTAB, etc.), Vision Transformer (ViT) attains excellent results compared to state-of-the-art convolutional networks while requiring substantially fewer computational resources to train.

1 repository
2 references

Code References

huggingface/transformers
2 files
docs/source/en/model_doc/deit.md
1
Sablayrolles, Hervé Jégou. The [Vision Transformer (ViT)](vit) introduced in [Dosovitskiy et al., 2020](https://huggingface.co/papers/2010.11929) has shown that one can match or even outperform existing convolutional neural
docs/source/ja/model_doc/deit.md
1
サブレイロール、エルヴェ・ジェグー。 [Dosovitskiy et al., 2020](https://huggingface.co/papers/2010.11929) で紹介された [Vision Transformer (ViT)](vit) は、既存の畳み込みニューラルと同等、またはそれを上回るパフォーマンスを発揮できることを示しました。
Link copied to clipboard!