Proximal Stochastic Dual Coordinate Ascent

Shai Shalev-Shwartz, Tong Zhang
2012
2 references

Abstract

We introduce a proximal version of dual coordinate ascent method. We demonstrate how the derived algorithmic framework can be used for numerous regularized loss minimization problems, including $\ell_1$ regularization and structured output SVM. The convergence rates we obtain match, and sometimes improve, state-of-the-art results.

1 repository
2 references

Code References

tensorflow/tensorflow
1 file
tensorflow/go/op/wrappers.go
2
L43305 // [Proximal Stochastic Dual Coordinate Ascent](http://arxiv.org/pdf/1211.2717v1.pdf).<br>
L43424 // [Proximal Stochastic Dual Coordinate Ascent](http://arxiv.org/pdf/1211.2717v1.pdf).<br>
Link copied to clipboard!